Not-So-Stubby Area – Sass Learns https://sassenachlearns.com/ Sat, 10 Jun 2023 18:35:43 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 OSPF Neighbor Adjacency Requirements https://sassenachlearns.com/2017/10/22/ospf-neighbor-adjacency-requirements/ https://sassenachlearns.com/2017/10/22/ospf-neighbor-adjacency-requirements/#respond Sun, 22 Oct 2017 22:07:00 +0000 https://sassenachlearns.com/?p=136 Routing Protocols, unlike humans, can choose their neighbors. We, no matter what we do, cannot choose who’s going to rent or occupy the house near us. Yeah, we like to have handsome neighbors, neighbors with abs, educated persons, kind and thoughtful, clean and tidy, caring, and the most important one is someone with a stable job. However, in reality, it can be anyone. There is no such choice or whatever. Are we really looking for neighbors or fiance?

OSPF, like any other routing protocols, can agree or decline neighborship if their requirements are not met. Here are the adjacency requirements in order to form neighborship with OSPF:

1. same area ID
2. same subnet
3. same authentication type and authentication password
4. same hello and dead timers configuration
5. same area type

AREA ID

You configure Hyla s2/0 interface in area 1 and you configure Anaxyrus s2/1 interface in area 0. Do you think they are going to be neighbors? No. The first thing that OSPF checks is to form adjacencies with routers in the same area. It will be a mismatch if they are not on the same area.

Bringing back my topology on my previous post:

Anopheles(config)#router ospf 2
Anopheles(config-router)#network 192.168.12.0 0.0.0.255 area 0

Culex(config)#router ospf 1
Culex(config-router)#no network 192.168.12.0 0.0.0.255 area 0
Culex(config-router)#network 192.168.12.0 0.0.0.255 area 10
*Oct 18 23:54:34.411: %OSPF-4-ERRRCV: Received invalid packet: mismatch area ID, from backbone area must be virtual-link but not found from 192.168.12.2, Serial2/0

An invalid packet has seen indicating a mismatch area ID.

SUBNET MASK

A subnet mask is part of a Hello packet and one of the criteria that OSPF looks to form adjacencies. If you configure the two links in a different subnet, it will show a mismatch in hello packet parameters. This indicates that both links have different subnet masks. There is somehow a debate about this because this one should not be a mandatory requirement for OSPF adjacency. Subnet mask in point-to-point links is ignored and formed neighborship even connected links don’t have the same subnet mask. I will show you my lab example in my future posts.

AUTHENTICATION TYPE/AUTHENTICATION PASSWORD

As the name explicitly states, it is all about authentication configuration on OSPF. You must sure that if you have configured authentication on one link, you should have the same authentication configured on the remote link as well. And the authentication type should be the same: 0 – no password, 1 – plain text, and 2 – MD5 password. Lastly, the authentication key should be the same as well. I have a separated full-blown post regarding OSPF authentication.

HELLO AND DEAD TIMERS

EIGRP doesn’t care about its hello and dead timers but OSPF does. Hello and dead timers are OSPF Hello parameters and they must match or else adjacencies will not be formed. These two parameters are very crucial in determining if a neighbor still exists or not. A hello interval indicates how often the hello packet is sent while the dead timer indicates how long the neighbor router should wait for hello packets before declaring its link dead. The default hello interval for broadcast and point-to-point links is 10 seconds while dead timer is 40 seconds. And for the NBMA, point-to-multipoint, and point-to-multipoint NBMA hello timer default is 30 seconds while dead timer is 120 seconds. Did you notice that the dead timer is always four times the value of hello timer?

AREA TYPE

This is where OSPF area types like StubTotally StubbyNSSA, and Totally NSSA come into play. Looking back on my previous post regarding area types, if you want to configure a certain area as Stub, Totally Stubby, NSSA, and Totally NSSA all the routers in this area should be in the same area type as well or else no adjacencies will be formed.

OSPF NETWORK TYPE
There are different OSPF network types: Broadcast, Non-Broadcast, Point-to-point, and Point-to-multipoint. Network type is not usually tagged as one of the mandatory requirements to form neighborship with OSPF. However, incompatible network types can’t form adjacency to each other. These network types can be further classified as DRs and non-DR types. Combining a DR and non-DR will not form OSPF adjacencies.

]]>
https://sassenachlearns.com/2017/10/22/ospf-neighbor-adjacency-requirements/feed/ 0
OSPF Areas: Not-So-Stubby Area (NSSA) https://sassenachlearns.com/2017/10/18/ospf-areas-not-so-stubby-area-nssa/ https://sassenachlearns.com/2017/10/18/ospf-areas-not-so-stubby-area-nssa/#respond Wed, 18 Oct 2017 18:31:00 +0000 https://sassenachlearns.com/?p=168 Do you know about Sergeant Stubby? He was a famous dog of high rank who has been commissioned to serve in the infantry division of the US in the first World War ever in history. Though he was born a year or two before the Great War ends, it was said that he had served for 18 months as a war dog. At a young age, he had faced several battles on the field. Like any other man on the field, he got wounded a lot of times like foreleg injury due to German’s hand grenades.

Our topic for today is not about Sergeant Stubby but how a Stub network can be not so stubby. Isn’t it exciting?

Not-So-Stubby Area (NSSA) behaves like Stub area. It allows Inter-Area (O IA), Intra-Area, and default routes. LSA Type 1, Type 2, Type 3 are allowed but unlike the Stub area, External LSAs are allowed in NSSA area. External LSA in an NSSA area is not using Type 5 LSA but Type 7 LSA. Type 7 LSA tricks the OSPF area but in fact, it is the same as a Type 5 LSA. Type 5 LSA cannot propagate through an NSSA area and in order to do that a Type 5 to Type 7 translation (vice-versa) is being done by the ABR. Thus, it allows routes to be redistributed from an ASBR into that area with the use of Type 7 LSA.

In any case, the router in your Stub network needs to be connected to a new external network, then you need to configure it as NSSA. As discussed in my previous post, a Stub network will not be able to redistribute the routes as External LSA.

OSPF Not-So-Stubby (NSSA) Area

Let us redistribute Loopback 30 into Aedes and assigned both Aedes and Anopheles as NSSA network.

Aedes(config)#router ospf 3
Aedes(config-router)#no area 20 stub
Aedes(config-router)#area 20 nssa
Aedes(config-router)#area 20 nssa
Aedes(config-router)#redistribute connected subnets
Aedes(config-router)#end

Anopheles#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Anopheles(config)#router ospf 2
Anopheles(config-router)#no area 20 stub
Anopheles(config-router)#area 20 nssa

Now that we have done redistribution, the routing table and database for Culex are changed:

Culex: show ip route

Culex learned external network 172.30.200.0 via Anopheles and tagged it as O E2 in the routing table. OSPF External Type 2 metric is the default since we did not configure it manually.

Not-So-Stubby Area (NSSA): show ip ospf database

And finally, we got Type 5 LSA in the Culex routing table with 192.168.2.1 (Anopheles router ID) as the advertising router.

Let’s check what happened to Anopheles routing table and database.

Not-So-Stubby Area (NSSA): show ip route

It has learned the external network 172.30.200.0 and tagged it as “O N2.” In Culex, it is tagged as “O E2” because the router is not in NSSA Area, unlike Anopheles.

The Anopheles database should match exactly with Culex and Aedes.

Not-So-Stubby Area (NSSA): show ip ospf database

.Going to Aedes, let us check the routing table and the database.

Not-So-Stubby Area (NSSA): show ip route

It has the same routing table as when we configured it is a stub. However, notice that there is no default route for Inter-Area. Why there is no default route being injected to the Aedes router automatically like what Stub does? It is how OSPF NSSA is designed. You can never argue if it is really how it is designed. However, this opens up another big discussion as it is all about the OSPF route preference which is the way OSPF calculates SPF and chooses the best path. For now, let be like that but if you still insist to have the default route, you can actually explicitly enter this command in the ABR:

Anopheles(config)#router ospf 2
Anopheles(config-router)#area 20 nssa default-information originate

Not-So-Stubby Area (NSSA): sh ip ospf database

As you can see, there is no Type 5 LSA but only Type 7 LSA. Its database is exactly the same as Anopheles.

LSA Types AllowedLSA Types Not Allowed
Type 1, Type 2, Type 3, Type 7Type 5

]]>
https://sassenachlearns.com/2017/10/18/ospf-areas-not-so-stubby-area-nssa/feed/ 0
OSPF Areas: Totally Not-So-Stubby Area (NSSA) https://sassenachlearns.com/2017/10/18/ospf-areas-totally-not-so-stubby-area-nssa/ https://sassenachlearns.com/2017/10/18/ospf-areas-totally-not-so-stubby-area-nssa/#respond Wed, 18 Oct 2017 18:28:00 +0000 https://sassenachlearns.com/?p=163 The last OSPF area that we will tackle is the Totally Not-So-Stubby Area (Totally NSSA)NSSA, like Stub area, has two flavours: one that is regular NSSA and the other one that is totally NSSA. The way it is configured is just the same as the Totally Stubby area where you are going to configure it in the ABR.

I will use the same lab in my previous post. I just changed the configuration on the Anopheles router and put the “no-summary” command.

Anopheles#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Anopheles(config)#router ospf 2
Anopheles(config-router)#area 20 nssa no-summ
Anopheles(config-router)#area 20 nssa no-summary
Anopheles(config-router)#end

Aedes(config)#router ospf 3
Aedes(config-router)#no area 20 stub
Aedes(config-router)#
Aedes(config-router)#area 20 nssa

It would be better to check the differences between NSSA and Totally NSSA using the before and after the output of the NSSA configuration.

NSSA and Totally NSSA: show ip route

Unlike NSSA, Totally NSSA once configured on the ABR, will automatically inject the default route to advertise Type 3 LSAs. So, there is no need to explicitly configure it. Am I repeating the same thing?

NSSA and Totally NSSA: show ip ospf database

Just like what happened in the Totally Stubby Area database, Type 3 LSAs are restricted and all that is left is the Type 1 LSA, Type 7 LSA and the default route advertised by 192.168.2.1.

LSA Types AllowedLSA Types Not Allowed
Type 1, Type 2Type 7

My posts regarding OSPF Area types are not yet done. If you will take a closer look, there are many things that I haven’t touched yet or clarified yet. Like if you check the database output, why some LSAs are missing even though it is allowed in this kind of area? This is going to be another discussion in my future posts.

]]>
https://sassenachlearns.com/2017/10/18/ospf-areas-totally-not-so-stubby-area-nssa/feed/ 0